d462: CycleGAN TensorFlow tutorial

CycleGAN TensorFlow tutorial: “Understanding and Implementing CycleGAN in TensorFlow – https://hardikbansal.github.io/CycleGANBlog/ by Hardik Bansal , Archit Rathore

Learn more about CycleGAN: Cycle-Consistent Adversarial Networks

CycleGAN Paper: https://arxiv.org/abs/1703.10593 (30 Mar 2017 – by Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros)


Image-to-image translation is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image using a training set of aligned image pairs. However, for many tasks, paired training data will not be available. We present an approach for learning to translate an image from a source domain X to a target domain Y in the absence of paired examples. Our goal is to learn a mapping G:Xsuch that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss. Because this mapping is highly under-constrained, we couple it with an inverse mapping F:YX and introduce a cycle consistency loss to push F(G(X))X (and vice versa). Qualitative results are presented on several tasks where paired training data does not exist, including collection style transfer, object transfiguration, season transfer, photo enhancement, etc. Quantitative comparisons against several prior methods demonstrate the superiority of our approach.

CycleGAN Network Architecture:

CycleGAN Network Architecture

CycleGAN TensorFlow results: 

CycleGAN TensorFlow tutorial results

One thought on “d462: CycleGAN TensorFlow tutorial”

Comments are closed.